BU406, BU407

NPN Power Transistors

These devices are high voltage, high speed transistors for horizontal deflection output stages of TV's and CRT's.

Features

High Voltage: V_{CEV} = 330 or 400 V
 Fast Switching Speed: t_f = 750 ns (max)

• Low Saturation Voltage: $V_{CE(sat)} = 1 \text{ V (max) } @ 5 \text{ A}$

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector–Emitter Voltage	BU406 BU407	V _{CEO}	200 150	Vdc
Collector–Emitter Voltage	BU406 BU407	V _{CEV}	400 330	Vdc
Collector-Base Voltage	BU406 BU407	V _{CBO}	400 330	Vdc
Emitter-Base Voltage		V _{EBO}	6	Vdc
Collector Current - Continuous - Peak Repetitiv - Peak (10 ms)	/e	I _C	7 10 15	Adc
Base Current		I _B	4	Adc
Total Device Dissipation @ T _C = 2 Derate above 25°C	5°C	P _D	60 0.48	W W/°C
Operating and Storage Junction Temperature Storage		T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.08	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	70	°C/W
Maximum Lead Temperature for Soldering Purposes1/8" from Case for 5 Seconds	TL	2675	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

NPN SILICON POWER TRANSISTORS 7 AMPERES – 60 WATTS 150 AND 200 VOLTS

TO-220AB CASE 221A-09 STYLE 1

MARKING DIAGRAM

BU40x = Specific Device Code

x = 6 or 7

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BU406	TO-220AB	50 Units / Rail
BU406G	TO-220AB (Pb-Free)	50 Units / Rail
BU407	TO-220AB	50 Units / Rail
BU407G	TO-220AB (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BU406, BU407

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 100 mAdc, I _B = 0)	BU406 BU407	V _{CEO(sus)}	200 150	_ _	_ _	Vdc
Collector Cutoff Current		ICES	- - -	- - -	5 0.1 1	mAdc
Emitter Cutoff Current (V _{EB} = 6 Vdc, I _C = 0)	6, BU407	I _{EBO}	-	-	1	mAdc
ON CHARACTERISTICS (Note 1)				•		
Collector–Emitter Saturation Voltage $(I_C = 5 \text{ Adc}, I_B = 0.5 \text{ Adc})$		V _{CE(sat)}	_	_	1	Vdc
Base–Emitter Saturation Voltage (I _C = 5 Adc, I _B = 0.5 Adc)		V _{BE(sat)}	-	-	1.2	Vdc
Forward Diode Voltage (I _{EC} = 5 Adc) "D" only		V _{EC}	-	-	2	Volts
DYNAMIC CHARACTERISTICS	•			•	•	
Current-Gain - Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f _{test} = 20 MHz)		f _T	10	_	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz)		C _{ob}	_	80	_	pF
SWITCHING CHARACTERISTICS						
Inductive Load Crossover Time ($V_{CC} = 40 \text{ Vdc}$, $I_C = 5 \text{ Adc}$, $I_{B1} = I_{B2} = 0.5 \text{ Adc}$, $L = 15 \text{ Adc}$	60 μH)	t _c	_	_	0.75	μS

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1%.

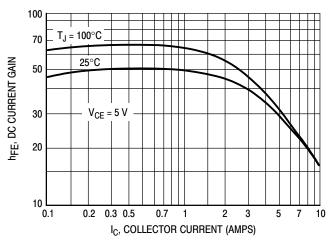


Figure 1. DC Current Gain

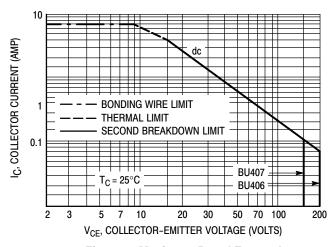
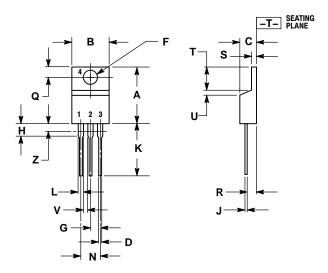



Figure 2. Maximum Rated Forward Bias Safe Operating Area

BU406, BU407

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

STYLE 1:

PIN 1. BASE

- 2. COLLECTOR
- 3. EMITTER
- 4. COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative